GEP Book
Home
News
Author
Q&A
Tutorials
Downloads
GEP Biblio
Contacts
Visit Gepsoft
|
C. FERREIRA |
In R. Roy, M. Köppen, S. Ovaska, T. Furuhashi, and F. Hoffmann, eds., Soft Computing and Industry: Recent Applications, pages 635-654, Springer-Verlag, 2002.
|
|
|
Gene Expression Programming in Problem Solving
|
|
Abstract |
|
Gene expression programming is a full fledged genotype/phenotype system that evolves computer programs encoded in linear chromosomes of fixed length. The structural organization of the linear chromosomes allows the unconstrained and fruitful (in the sense that no invalid phenotypes will follow) operation of important genetic operators such as mutation, transposition, and recombination as the expression of each gene always results in valid programs. Although simple, the genotype/phenotype system of gene expression programming is the first artificial genotype/phenotype system with a complex and sounding translation mechanism. Indeed, the interplay between genotype (chromosomes) and phenotype (expression trees) is at the core of the tremendous increase in performance observed in gene expression programming. Furthermore, gene expression programming shares with genetic programming the same kind of tree representation and, therefore, with GEP it is possible, for one thing, to retrace easily the steps undertaken by genetic programming and, for another, to explore easily new frontiers opened up by the crossing of the phenotype threshold. In this tutorial, the fundamental differences between gene expression programming and its predecessors, genetic algorithms and genetic programming, are briefly summarized so that the evolutionary advantages of gene expression programming could be better understood. The work proceeds with a detailed description of the main players in this new algorithm, focusing mainly on the interactions between them and how the simple yet revolutionary structure of the chromosomes allows the efficient, unconstrained exploration of the search space.
|
|
Home
|
Contents
| Next
|
|